Chorales, Chords, and Counterpoint:
Generating Harmonizations from User-Given Melodies

Graham Lazorchak
Oberlin College

glazorch@oberlin.edu

ABSTRACT

The aim of this project was to use machine
learning to generate counterpoint following the style of
Bach’s chorales, inspired by the Bach Counterpoint
Creator Google Doodle [1]. This is accomplished by
feeding a melody line into a Markov model that
generates chords based on sequences of notes and
chords found in Bach chorales. This melody line and
chord sequence is then given as input to a
Convolutional Neural Network, which generates
accompanying alto, tenor, and bass lines that harmonize
with the original melodic line. This approach produced
promising results.

1. INTRODUCTION

The application of computer science to art is a
heavily explored and exciting area of inquiry. While art
and photography are at the forefront, with creations
such as Craiyon [2] and Lensa [3] generating a lot of
media attention recently, music can also be merged with
computer science. In this project, we explore how
music can be interpreted by a machine learning
algorithm, with the hope that sufficiently sophisticated
models may be able to pick up on composition patterns
and music theory rules that human composers draw on
in their work.

The Bach Counterpoint Creator Google
Doodle’s approach is far from perfect; it can be fun for
some quick experimentation, but the harmonizations
tend to be rather boring and don’t quite follow
European music theory. One major source of these
problems is the Google Doodle’s data set. The Google
Doodle is trained on a relatively small data set of 306
Bach chorales [1]. Additionally, its machine learning
model only uses TensorFlow.js to allow all of its
computations to run online instead of the user’s
computer, decreasing the possible computing power [1].

Jacob Richter
Oberlin College

jrichter@oberlin.edu

Veronica Ayars
Oberlin College

vayars@oberlin.edu

Izzy Snyder
Oberlin College

isnyder@oberlin.edu

This moderately successful model presents a
fun challenge: creating a machine learning model that
produces better results. In the pursuit of more beautiful
counterpoint harmonies, we developed a two-step
solution: first, a Markov model harmonizes, or assigns
chords to, a melody. Then, a Convolutional Neural
Network (CNN) generates three musical lines based on
the melody and chords to create the counterpoint. We
were able to quadruple the size of the data set for our
Markov model by dividing each Bach chorale into four
separate training files, one with each voice (soprano,
alto, tenor, and bass) as the melody. Additionally, we
implemented a bash script to run both models
sequentially, and a graphical user interface that allows
the user to input a melody and display the finished
counterpoint.

For our harmonization model, we developed
two Markov models: a variation on a Markov chain and
a Hidden Markov Model. Both Markov models yielded
relatively low accuracy rates (around 42% to 50%).
However, these were statistically significantly higher
than a baseline of always guessing a C major chord
(which produced accuracies between 28% to 35%).
This is also impressive considering how many possible
chord choices there are, and that many may be
acceptable even if they are not the chords Bach wrote.
The Hidden Markov Model statistically significantly
outperformed the Markov chain, informing our decision
to use the Hidden Markov Model in our two-step
solution.

Our counterpoint model produced very
impressive results using a CNN. However, it is difficult
to evaluate our counterpoint model from an objective
standpoint. If we simply compare the results of the
network to Bach’s solution, it isn’t a meaningful
comparison. A melody can be harmonized with
contrapuntal lines in multiple valid ways, even with the
same chord progression. However, we can state
confidently that, simply by ear, the results of the CNN
tend to sound pleasant, and that the results improved

qualitatively over the course of the training epochs. The
model was trained using categorical cross-entropy as its
loss function, and the loss decreased greatly over the
course of the training epochs as well.

2. RELATED WORK

In addition to the previously mentioned
Google Doodle, much research has been done to
generate music and predict chord sequences. In this
section, we present an overview of this area of research
as a whole as well as specific implementations, such as
Coconet and ChordAL, from which we drew inspiration
for our approach.

The paper Music Composition with Deep
Learning: a Review [4] discusses the methods used to
generate music, the challenges of choosing good
evaluation metrics for the mostly subjective task of
making music, and questions of authorship and
creativity. According to the paper, commonly used
neural network architectures for music generation are
variational autoencoders (VAEs), generative adversarial
networks (GANs), and transformers. Common elements
that all of these have is two independent pieces of the
structure (encoder and decoder, generator and
discriminator) passing the prediction back and forth to
generate a result or improve at generating a result.

The paper mentions many specific projects
which we looked at to better understand approaching
this problem: Google’s Magenta Melody RNN;
Anticipation-RNN; DeepBach; MusicVAE, which is
now one of the best models at creating a short motif;
MusicTransformer; MuseNet; TransformerVAE;
PianoTree; MICA and MSMICA for multi-instrument
orchestration; Coconet; ChordAL for generating chord
structures which inform note generation; and BebopNet
for jazz. The author mentions that newer models use a
combination of models to overcome problems like
length constraints and randomness in note choice, and
that some models use external parameters like
self-similarity constraints to give the music more
repetitious structure.

A challenge this paper brings up is evaluating
ML/Al-generated music. The author claims that it is
important to evaluate outputs subjectively by someone
with a musical background, similar to how human
composed pieces are evaluated. Objective measures are
also mentioned, which include loss, perplexity, BLEU
score, precision, and recall or F-score. There are also

metrics related to pitch, rhythm, harmony that are
useful for specifically evaluating music.

This paper presents many examples of models
that are successful at some aspect of music generation,
links to helpful datasets, and brings up important
questions which are relevant to how we evaluated our
model’s performance.

Two models that have been particularly
influential on our research are Coconet and ChordAL.

A few months after the Google Doodle was
made public on Google’s search page, the creators
submitted a paper [5] detailing their techniques. The
Google Doodle’s inner mechanics are based on a
re-implementation of Coconet [1], a model described in
an earlier paper [6] by some of the same researchers.
Coconet works in part by using a CNN, which takes a
partially-masked section of music as input in the form
of a piano roll, together with the shape of the mask. The
network learns through stochastic gradient descent to
replicate the masked region.

The distributions generated by this network are
used with a Neural Autoregressive Distribution
Estimator (NADE) [7] to predict the contents of a given
piano roll. This by itself is typically not very clean, so
the researchers used blocked Gibbs sampling to get a
more pleasing harmonization.

The Google Doodle made a few alterations
from the original Coconet implementation. Notably,
they quantized the weights of the model, which led to
reduced download size, but also potentially poorer
performance—it is our opinion that the Coconet demo
is more adept at producing harmonizations than the
Google Doodle.

ChordAL is a model that generates music with
an emphasis on chord structure and harmony. It is
discussed in the paper ChordAL: A Chord-Based
Approach for Music Generation using Bi-LSTMs [8].
ChordAL is made up of three parts: a chord generator, a
chord-to-note generator, and a styler.

The chord generator uses a starting seed to
generate a chord progression, which it has learned from
a chord database. In the learning phase, chord vectors
were passed into a 32-dimensional embedding layer.
These embeddings were then passed into a stacked
Bi-LSTM with 2 hidden layers of 64 neurons each. This
method is based on ideas from natural language
processing, which is similar in many ways to music
processing.

The note generator outputs notes off of the
chord output of the chord generator. To generate notes,
chords are converted to their learned embeddings and
then fed into a stacked Bi-LSTM with 2 layers of 64
hidden neurons each. The styling of the piece
post-processes the output to make it more polished and
listenable by removing random short notes and
applying user-set instrumentation settings.

The paper claims that ChordAL learned chord
relationships similar to the circle of fifths for
determining chord similarity, and could therefore
understand some fundamental musical relationships
about harmony. Music evaluators who were surveyed
on the harmonization, rhythm, and structure of
ChordAL generated music rated the pieces very highly
for harmony and moderately to low for rhythm and
structure. Improving the rhythm and structure is an area
of further research for the developers.

The datasets used in this model were the
Nottingham dataset [9], The McGill-Billboard Chord
Annotations dataset [10], and the CSV Leadsheet
database [11]. Some of these datasets are publicly
available on GitHub [12] due to ChordAL being open
source.

3. PROBLEM

For our project, we aimed to improve upon the
counterpoint generated by the Bach Counterpoint
Creator Google Doodle. Similar to the Google Doodle,
we wanted to allow a user to input a melody on a
sixteenth note grid and have our model generate alto,
tenor, and bass lines to form counterpoint with the
user’s melody.

The Google Doodle is trained on 306 Bach
chorales from the JSB Chorales dataset [13] and uses
TensorFlow.js to run the model entirely in the browser
[1]. Its model is based on Coconet, a machine learning
model created by Anna Huang, an Al resident of the
Magenta Team [5] [6]. The biggest problem with the
Google Doodle is the small size of its data set, which
results in the occasional creation of a sub-par
counterpoint. Our goal was to develop a better
counterpoint creator through investigating different
machine learning models, using a larger training data
set, and using a two-step approach of first harmonizing
a melody and then generating counterpoint based on the
result of the harmonization, as this is similar to the
workflow of many composers. The harmonization
model would learn to assign chords for the user’s

melody at a given harmonic rhythm (for instance, every
eighth note or every quarter note), and the counterpoint
model would learn to compose counterpoint based on
those chords and the melody.

4. SOLUTION

We created a model that operates in two parts:
first, a Markov model takes in a melody line and
produces a sequence of chords. Then, a CNN generates
the final counterpoint. All of this relies on both
functional models and a large dataset. Below we discuss
the way the data was collected and preprocessed, as
well as the specifics of our model implementations.

The Data

We used the same dataset used by Coconet and
the Google Doodle, JSB Chorales [13], which encodes
382 4-voice Bach chorales as 2D arrays of integers. The
data set divides the piece into 16th note chunks; each
row of the 2D array contains the MIDI values of the
notes for each of the four voices in one of the 16th note
chunks. The main obstacle with this data set was that it
did not contain chord data, but using a deterministic
algorithm, we were able to assign chords to each time
step of the counterpoint sequence and identify the key
signature of each chorale. Additionally, we split each
chorale into four files, each consisting of one of the
lines (soprano, alto, tenor, or bass) along with the chord
sequence and key signature, yielding 1528 individual
melodies with chords for our harmonization model to
train and test on.

For each model, we used 80% of our data for
training and 20% of our data for testing. Since the four
melody-chord files generated from each chorale have
the same chords, we did not split up data generated
from the same chorale between training and testing for
the harmonization model.

For the harmonization model’s training and
test data, we normalized the notes to be between 0-11
because harmonic progressions are generally not
dependent on a melody’s octave. We also transposed all
melodies into C major or its relative minor, A minor,
because harmonic progressions are key-independent.
All major keys have the same harmonic progressions
and all minor keys have the same harmonic
progressions.

The Models

https://github.com/czhuang/JSB-Chorales-dataset
https://github.com/czhuang/JSB-Chorales-dataset

Similar to ChordAL [8], our solution uses
multiple stages. First, a Markov model determines how
to harmonize the given melody by generating chords in
the melody’s key. Second, a CNN and sampling
procedure similar to Coconet’s uses those chords to
produce a four-part harmonization. Splitting this
process into two steps allows us to parallelize our work
and fine-tune our models to be good at each task.

For harmonization, we developed two Markov
models, the first being a variation on a relatively simple
Markov chain. Instead of using only the n-1th chord to
predict the nth chord like a typical Markov chain
would, our model uses the n-1th melody note, n-1th
chord, and nth melody note to predict the nth chord.
Also, instead of randomly selecting the nth chord based
on the probabilities of all the possible choices, we
always select the chord with the highest probability. We
also trained a model to predict the nth chord based on
only the nth melody note, which we use to predict the
first chord and any note/chord combinations that the
model cannot account for because it does not exist
within the training set. If this model also fails, we
assign the nth chord to be the starting chord. In hopes of
improving accuracy, we tried a more complicated
model setup where we additionally considered the
chord’s location within the melody, but this did not
significantly improve our results.

Our second harmonization model is a Hidden
Markov Model, which we created using hmmlearn [14].
A Hidden Markov Model attempts to find the most
likely sequence of states for a Markov chain given a
variable observed at each timestep. In our case, the
states are chords and we observe the melody at each
timestep (specified as quarter or eighth notes); we want
to find the most probable chord progression to
harmonize the melody. Hidden Markov Models
consider both transition probabilities, or the probability
each state (chord) will follow the previous one, and
emission probabilities. An emission probability is the
percent chance that the observed variable (melody) will
take on a specific value (note name) given a particular
state (chord). Since the first state does not follow any
other state, we also need a set of initial
probabilities—how likely each chord is to be the first
chord. Our program calculates all three types of
probabilities by counting instances in the training set
and stores the transition and emission probabilities in
2D matrices and the initial probabilities in an array. We
also experimented with creating two separate Hidden
Markov Models, one for major key melodies and one

for minor key melodies, but this did not result in a
statistically significant difference in accuracy.

Both Markov models contain a
hyperparameter, harmonic rhythm, which determines
the interval at which it observes chords in the training
set and generates them when harmonizing a melody.
For example, an eighth note harmonic rhythm would
mean the model generates a new chord every eighth
note.

For creating counterpoint, we used a CNN.
Convolutions take advantage of the spatial nature of
musical data. Shifting a passage of music up or down in
pitch affects the actual note names, but not the
relationships among them. Similarly, shifting a passage
left or right in time doesn’t change how one note moves
to the next. However, like with images, the relative
position of one note to another is highly important.

Rather than inputting an entire chorale’s worth
of data, the network deals with 32 timesteps (i.e., 32
sixteenth notes) at a time. We first attempted to train the
model by dividing the chorales from the dataset into
non-overlapping samples of 32 timesteps each.
However, we found that we could increase the amount
of data at our disposal by using overlapping samples
with a stride of 4 timesteps. This was chosen because it
maintains the placement of strong beats by shifting each
sample by a quarter note.

The pitch range of the model was also
constrained to the 46 notes present in the JSB Chorales
dataset. While we did not artificially create more data
by transposing chorales up or down from their original
key, this may be an opportunity for future
improvements to the training data.

We originally used a quasi-one-hot encoding
scheme for the chord data. However, we found that the
network learned better if we simply had 12 neurons in a
column, each representing a different pitch class, and
gave activations of 1 to the notes present in a given
chord.

The network takes the melody and chords as
separate inputs which are processed in parallel. The
melody is fed into a series of convolution layers to learn
spatial features, while the chords are fed into a series of
dense layers. Eventually, the two layers are
concatenated and fed through a single dense layer.
From there, the melody creates a bass line. Finally, the
bass line and dense layer are concatenated and densely
connected to determine the alto and tenor lines.

The decision to generate the bass line first and
then have it feed into the alto and tenor comes from the

fact that the bass is typically more important than the
other two, since it greatly influences the quality of a
chord.

When creating the output chorale, we had
originally planned to sample the probability distribution
of each column in each output layer, similar to
Coconet’s sampling procedure. However, this proved to
be extremely chaotic; the model didn’t learn the
probabilities with enough confidence for the sampling
to produce desirable results. Instead, we opted to simply
pick the highest probability in each column. This, too,
led to some issues. First, the highest probability was
occasionally the first neuron in the column, which
corresponded to C2, the lowest note in the pitch range
of the data. This happened even when the note C wasn’t
present in the current chord, and happened in voices for
whom that note had never appeared in the dataset. Upon
examining the probability outputs, we found that this
occurred when all probabilities in a given timestep were
0. This is likely a result of using ReLU activation,
which sets all negative activations to 0. Second, the
voice parts were extremely chaotic, often moving
unidiomatically around their ranges. The bass voice in
particular would often leap up an octave on one
sixteenth note and then down an octave on the next.

To counter these issues, each unfiltered output
layer is also followed by a two convolution layers, each
with a single 3X5 filter.

The hope was that these filters would learn
something akin to a Gaussian kernel, smoothing out the
lines without the need for probabilistic sampling.

User Experience Components

In addition to creating two models, we also
created a GUI called PillyLond for users to create their
own melody, play back the melody, and play back the
generated harmonies. The GUI includes different colors
for each of the four voices, as well as MIDI playback of
the chorale. Most of these behaviors are based on the
Coconet editor. We did slightly change the way that
notes are erased; in addition to the eraser tool, clicking
on an active note with the same voice tool will
deactivate it, and clicking on it with a different voice
tool will replace it. This does mean that users cannot
write unisons between voices, but it is far more intuitive
for editing. When reading in a chorale, PillyLond
prioritizes the color of the lower voice on a unison.

To allow the user to easily pass a melody file
through both models, we created a bash script that runs
the harmonization model and the counterpoint model
sequentially. The bash script takes the file name
containing the melody as an argument and passes it to
the harmonization model. Once the model outputs a file
with the melodic line with its predicted chords, the file
is passed to the counterpoint model, which produces the
final harmonization. The user can then load the
harmonization into PillyLond and view the models’
joint results.

Inj Layers e
put Layers s s s k=(3,5)
%
S X X
Z) &
5 z z Unfiltered Filtered
g £ g »
Melody | e 3 g § > Alto —_— Alto
& g 5
& &
timesteps (32) X pitch range (46) (32 filters) (48 filters) (48 filters) timesteps (32) X pitch range (46) timesteps (32) X pitch range (46)
(2 filters in sequence
k=(,3 k=(3.5)
g Unfiltered i
Chord g Unfiltered Filtered Filtered
ords —_— | Bass —_— Bass Tenor > | Tenor
z

timesteps (32) X pitch classes (12)

Fig. 1. Convolutional Neural Network structure.

timesteps (32) X pitch range (46)

timesteps (32) X pitch range (46) timesteps (32) X pitch range (46)

fimesteps (32) X pitch range (46) .
(2 filters in sequence)

(2 filters in sequence)

5. RESULTS

Harmonization Models

1/8 note harmonic rhythm

1/4 note harmonic rhythm

Model Accuracy | CIlower | CI higher | Accuracy | CI lower | CI higher
Hidden Markov 0.446 0.441 0.451 0.496 0.489 0.503
Markov Chain 0.421 0.416 0.426 0.450 0.442 0.457

Baseline (always
guessing C major) 0.289 0.284 0.293

0.344 0.337 0.351

Table 1: Markov model accuracies. CI stands for 95% confidence interval.

To decide which Markov model to use for
our harmonization model, we calculated each Markov
model’s accuracy chord by chord. We awarded the
model full credit if the model predicted all
components of the chord correctly, and we gave the
model 2/3 credit if it predicted the chord’s root
correctly. If the true value of a chord was unknown
(i.e., the deterministic algorithm failed to identify it),
we did not factor the model’s prediction of that chord
into its accuracy.

We chose always guessing C major as a
baseline for comparison because C major is the most
common chord in the chorales and random guessing
would be much less accurate. For both harmonic
rhythms, the Hidden Markov Model and Markov
chain model both had higher accuracies (between
42% and 50%) than the baseline (28.9% and 34.4%).
Each model’s confidence intervals do not overlap
with the confidence intervals of the baseline, so we
conclude that both models statistically significantly
outperform always guessing C major.

While the accuracy of the Markov models
may seem low, it is important to take into account
that these models had a difficult task, as they had to
choose between 106 chords that were present in the
training data. Furthermore, the accuracy figures do
not take into account the fact that there may be
several acceptable chord choices for one musical
interval; our accuracy is calculated only with respect
to the chords Bach chose. Therefore, the accuracy
measures seem better suited for inter-model
comparison than an absolute evaluation of
performance.

When comparing the Hidden Markov Model
to the Markov chain model, the accuracy confidence
intervals were non-overlapping for both note
harmonic rhythms, indicating that the Hidden
Markov Model is statistically significantly more
accurate than the Markov chain model. One reason
we believe this may be the case is if a certain
combination of chords and melody notes never
appears in the training set, the Markov chain has to
resort to a less accurate model. The Hidden Markov
Model, on the other hand, never needs to change
approaches. Even when note-chord combinations are
present in the data set, if they only occur rarely, the
Markov chain model may experience overfitting. The
Hidden Markov Model is more likely to avoid this
because it consists of fewer, more generally
applicable probabilities since the conditions for its
conditional probabilities are less specific and thus
more likely to occur often in the training chorales.

As for choosing a harmonic rhythm, we
found that our Markov models were statistically
significantly more accurate at generating chords
every quarter note than every eighth note, perhaps
because chord changes on offbeat eighth notes are
comparatively rare and unpredictable to ones on the
quarter note beat. We conclude that the most accurate
harmonization model is the Hidden Markov Model
with a quarter note harmonic rhythm. However, the
eighth note Hidden Markov Model may be better if
we want to generate more interesting harmonies; this
is the model we used in our two-step approach. The
Markov chain model is still usable despite its lower
accuracy.

Counterpoint Model

It is difficult to evaluate the counterpoint
model from an objective standpoint. We can compare
the output of the network to Bach’s solution, but this
isn’t necessarily a meaningful comparison; a melody
can be harmonized with contrapuntal lines in multiple
valid ways, even with the same chord progression.

The model was trained using categorical
cross-entropy as its loss function, and we can plot the
loss over the course of training, shown in Fig. 2.

We can also make more subjective
evaluations on the model’s performance. While the
addition of filters on the voice parts did reduce some
noise, the voices are noticeably more active than in
the Bach examples. This could be reduced using
ancestral or Gibbs sampling, but that would also
require training the network on additional data with
multiple voices, leading to increased training times.
The lines also tend to be more chromatic and include
dissonances uncharacteristic of the Baroque style.
Some of these dissonances may be due to the final
convolution filters pulling notes “off-course.” While
the voices are consonant with one another in most
cases and tend to mostly use the notes present in the
chord data, not all notes of the chord are always
present in the final chorale. In particular, the third of
the chord, which is one of the most important factors
in determining a chord’s quality, is often left out of
the model’s harmonizations. This was common in
Renaissance counterpoint, but is practically unheard
of in Bach’s works. This missing third may be caused
by treating the alto and tenor voices as independent
outputs in the model architecture.

Utilizing our bash script, we were able to
pass a melody to our harmonization model, pass the
resulting chords to our counterpoint model, and
generate three contrapuntal lines. While we did not
have enough time to collect detailed metrics, we
noted that counterpoint generated using both models
tended to be more syncopated and dissonant than
counterpoint generated by the counterpoint model
alone, as shown in Fig. 3. This is likely due to the
chords the counterpoint model is passed. When
running just the counterpoint model, we used the
original chords present in the Bach chorale.

Loss Over the Course of Training

—— loss
104

Loss

0 25 50 75 100 125 150 175 200
Epoch

Fig. 2. Loss over the course of training the CNN.

cn [|]

7
A7 HEE NEEE L | |
A69 L L1 |} L L L]] -

G 67 [] []| |

F65 NI

D 63 I -
u

c#61]
c60 1]

45 H HE L L
A57 | |

F53 H EEEEEEEEEEE

D# 51 L L1 [1] |
D50 [

L | . L |]

C36

Fig. 3. The melody to chorale 358 (top), and a
harmonization created using both the Hidden Markov
and CNN models (bottom).

When running both models sequentially,
however, we used the chords predicted by the
harmonization model. This allows for more error in
creating a counterpoint since both models can
produce undesirable results.

6. CONCLUSION

Our project focuses on generating
pleasing-sounding counterpoint based on chorales by
J.S. Bach, with inspiration from the Bach
Counterpoint Generator Google Doodle and its
predecessor, Coconet. Unlike these two programs,
our process involves two models. The first is a
Markov model that harmonizes the user’s melody,
and the second is a CNN that creates alto, tenor, and
bass lines given the user’s melody and the chords
generated by the first model. The resulting
harmonizations do not match Bach’s original
chorales, but they do broadly follow Bach’s
counterpoint conventions and have interesting chord
progressions. Additionally, the Markov models we
tested were statistically significantly more accurate
than a baseline of guessing C major for every chord.

Future implementations of this project could
take several different avenues. Mechanically, we can
work on connecting our bash script to our GUI so a
user can export their melody, run it through both
models, and import the resulting counterpoint without
leaving the GUI. The models themselves could also
continue to be tweaked and improved upon. There are
still random notes and dissonances present in our
current implementations, and the frequency of these
could be reduced by training the CNN for more
epochs or changing the parameters of our filters.
Furthermore, expanding our training set with works
from other composers in a wide range of genres could
help the harmonization model become better at
recognizing chord progressions present in other
musical styles, like rock or jazz. Lastly, our results
might improve if we used a GAN (generative
adversarial network). Such a model includes a
component that discriminates between
human-composed chorales and the ones it generates,
which could encourage it to achieve a more similar
harmonization to human composers.

REFERENCES

[1] “Celebrating Johann Sebastian Bach,” Google.
[Online]. Available:
https://www.google.com/doodles/celebrating-jo
hann-sebastian-bach [Accessed: 28-Oct-2022].

[2] “Craiyon.” [Online]. Available:
https://www.craiyon.com/ [Accessed:
19-Dec-2022]

[3] Z Sottile, “What to know about Lensa, the Al
portrait app all over social media, ” CNN,
11-Dec-2022. [Online]. Available:
https://www.cnn.com/style/article/lensa-ai-app-
art-explainer-trnd/index.html. [Accessed:
19-Dec-2022]

[4] C.Hernandez-Olivan and J. R. Beltran, “Music
composition with Deep Learning: A Review,”
arXiv.org, 27-Aug-2021. [Online]. Available:
https://arxiv.org/abs/2108.12290v1. [Accessed:
28-Oct-2022].

[5] C.-Z. A. Huang, C. Hawthorne, A. Roberts, M.
Dinculescu, J. Wexler, L. Hong, and J.
Howecroft, “The Bach Doodle: Approachable
music composition with machine learning at
scale,” arXiv.org, 14-Jul-2019. [Online].
Available: https://arxiv.org/abs/1907.06637.
[Accessed: 28-Oct-2022].

[6] C.-Z. A. Huang, T. Cooijmans, A. Roberts, A.
Courville, and D. Eck, “Counterpoint by
convolution,” arXiv.org, 18-Mar-2019.
[Online]. Available:
https://arxiv.org/abs/1903.07227. [Accessed:
28-Oct-2022].

[7] H. Larochelle, and I. Murray, “The neural
autoregressive distribution estimator.” [Online].
Auvailable:
http://proceedings.mlr.press/v15/larochelle11a/l
arochellella.pdf. [Accessed: 28-Oct-2022].

[8] T. H. Hao, “Chordal: A chord-based approach
for music generation using Bi-LSTMs.”
[Online]. Available:
http://computationalcreativity.net/iccc2019/pape
rs/iccc19-demo-9.pdf. [Accessed:
28-Oct-2022].

[9] E. Foxley, Nottingham Database. [Online].
Available:
https://ifdo.ca/~seymour/nottingham/nottingha
m.html. [Accessed: 28-Oct-2022].

[10]“The McGill Billboard Project,” The McGill
Billboard Project - DDMAL. [Online].
Available:
https://ddmal.music.mcgill.ca/research/The Mc
Gill Billboard Project (Chord Analysis Datas
et)/. [Accessed: 28-Oct-2022].

[11]“CSV Leadsheet Database ,”
CSV_Leadsheet DB. [Online]. Available:
http://marg.snu.ac.kr/chord _generation/.
[Accessed: 28-Oct-2022].

[12] gudgud96, “Gudgud96/Chordal: Code
accompanying ICCC 2019 creative submission
paper - ‘Chordal: A chord-based approach for
music generation using Bi-LSTMs’.,” GitHub.
[Online]. Available:
https://github.com/gudgud96/ChordAL.
[Accessed: 28-Oct-2022].

[13] Czhuang, “JSB-Chorales-Dataset,” GitHub.
[Online]. Available:
https://github.com/czhuang/JSB-Chorales-datas
et. [Accessed: 28-Oct-2022].

[14]hmmlearn developers, “HMMLEARN.”
hmmlearn, 2010.
https://hmmlearn.readthedocs.io/en/latest/.

